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ABSTRACT

Given a directed network whose arcs have lengths unrestricted in
sign and which contains at least one cycle, an algorithm to find
the minimum average length cycle (length divided by its number
of arcs) is described. A direct application of this algorithm
solves the problem of finding whether a directed graph contains
a cycle with negative length.




CYCLES WITH MINIMUM AVERAGE LENGTH
by

Alain Fillidres

l. Notations and Definitions

We denote a directed graph (N, T) by:

A finite set N of nodes 1, {1 ¢ {1, 2, ..., n} . A mapping T : t

N > ZN where ZN is the set of all subsets of N . J ¢ I'(1) means that

there exists an arc (1,j) going from node i to node j . We will denote by
v(1) an element of T'(i) ; it will be useful to write

ey arr*a) , k=0, 1, 2, ...
Let A= {(1,§)/1eN , jeT'(1)} be the set of arcs. A mapping ¢ :

A~+R is given, 2(1,j) 1s called the length of arc (1,j) . We define

LK) = ] 2(a)

aek

where K 1is any subset of A . L

Note that lengths are unrestricted in sign.

We will assume in the following that:

(N, T) contains at least one cycle.

(N, T) 1is so that T(i) ¥ ¢ VieN . This is no real restriction since one

can always add to the set A an arc (i,i) with a length 2(i,i) = = for every

i which has T(i) = ¢ , in the original graph.

A p-arcs cycle 1s a set:

c= {1, vy(1), 72(1), eer, vP(1) = 1} where YP(i) 4s an element of TrP(1) .




i e a

The average length of the p-arcs cycle C 1s defined by:

P-1
10 = § kzoz(v“u) )

Let C= (1'3".'1)

- 7-5+12 14
*
This paper describes an algorithm which yields the minimum average length
cycle in the graph (N, T) defined above. Thus this algorithm can also be used
The method

to find out whether the graph contains a negative length cycle.

is an application to a deterministic case of a policy-iteration method for multiple

Markov chain processes with rewards [2], [3] .

2. Policy ¥

A policy Yy isa mapping vy : N > N that associates to every 1eN an

element y(d)el(4) .

*
To get the maximum average length cycle, we replace the original arc lengths £

by -2 and apply the same algorithm.




Let (N,y) be the subgraph of (N,y) representing a policy y . The set

of arcs of (N,y) is:

AY = {(1,])/1eN, § = y(1)} .

There are Il | I'(1) | different policies with an equal number of associated graphs
ieN
(N,y) , where | I'(1) | 1s the cardinality of the set T(1) .

3. Properties of Graphs _(N,y)

P.1 (N,y) breaks down into connected components (Nh,yh) , he{l, 2, ..., k}
such that:
)
N, N NJ = ¢ i,3¢(1,2, ..., k}
k

U = N

h-1Nh
P.2 (Nh, yh) , he{l, ..., k} contains one and only one cycle.

P.3 Every 1eN he{l, ..., k} 1s either a node of the unique cycle of

h ?
(Nh, yh) ,» or a node of a unique chain leading to this cycle.
These properties are an obvious consequence of the definition of y and the

fact that N is a finite set.
k 1is the number of connected components of (N,y) .

There is a one-to-one correspondence between the set of cycles defined by

Y » and the connected components of (N,y) .

Let us call CI the cycle in the connected component containing node 1{ .

-
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1

N=1{1, 2, ..., 15} y(1) = 1
v(2) = 10
y(3) = 10

€Casy o s

{10,11,7,2,10} for ie ({2,3,4,7,9,10,11,15)
c' = (12,5,8,12} for ie {6,8,12)

{1,1} for 1e {1,13,14}

4. Policy Cost and Jptimality

The cost vector of a policy y 18 the n-vector g :

8 - [81’ 32’ teey gn]
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when 8y is the average length of the cycle CI .

Yy is better than ' ,v<{vy' , 1f g <g' .

ig optimal 1f vy 4y for all vy .

<

vy and y' are equivalent if and only if (i) = y'(1) , VieN .

~

In other words, CI is the minimum average length cycle which can be reached

* R
from 1 in the initial graph (N,T) . Therefore (N,y) contains the

minimum average length cycle of (N,T) .

The principle of the policy - iteration procedure is to start with an

arbitrary policy and to improve it step by step (according to the criterion &£

described above) until optimality is reached.

5. Functional Relation

A policy Yy being given, we have a first rzlation

(1) g = gy(i) VieN

where y(i) 1is associated with 1 by the policy vy .

Let Ai(t) be the length of a t-arcs chain starting from 1 i1in (N,y) ;

Ai(t) satisfies:

(2) Ai(t+1) - l(i.Y(i))+Ay(i)(t) VieN .

It is important to note that we are not dealing with the problem of finding the
minimum average length cycle which goes through a given node. An algorithm for

this case would solve the Traveling Salesman Problem by adding an arbitrary large

number to the length of every arc leaving this node.

-




If t is sufficiently large, from pProperties Pl, Pz, P3 one can see that

starting from any node i and coming along a large number of arcs one goes in

general:

a) along a unique chain up to a node, say m ,
b) a large number of times around the cycle starting from m ,

c) stop at a node of the cycle, say m' .

So Ai(t) can be expressed in the following form:
- tp
Ay (t) A (p) + [ - IR(C)HM.
when

P > 0 is the number of arcs between 1 and m , which corresponds to (a)

r = the number of arcs of the cycle CI

A .t the distance between m and m' along CI .




?
For a large value T of ¢t
2o c)-I 2(c) |
r r 3
or T times the average length of CI . Besides the quantity: Ai(p) + Ay
that we will call A depend only on 1 for a fixed T . !
Hence, we get the relation:
{
(3) A (T) = Tgi + v, for T large . \ ;

By using (3) in (2), we get: |
(T+1)gi +w o= L1,y(1)) + Tgy(i) + Vo)

or using (1)

81 + wi - 2'(i"f(i)) + wY(i) .

Then, we get the following relations satisfied by any policy vy :

(5) 8y + v, = L(1,y(1)) + wy(i)

forr all 1eN .




(4) and (5) give n equations in the n+k unknown variables 8ys +os By
and Wis ees W oo However, we only need to know the value of the differences

. 'j for i, j in the same connected component. So we set W = 0 for
h
an arbitrary ih in each connected component, h = 1,2, ..., k , and we call vy

the relative value of w, obtained by this way.

The value 8y and vy associated with every node ieN for a given policy,
are used to determine a better policy than vy .
6. Algorithm

Initial policy v,

Y, can be arbitrarily choosen. A good starting policy is , /4 satisfying:

l(i,yo(i)) = Min {2(i,h)] VieN
hel'(1)

Let Yie be the policy choosen at step k = 0,1,2, ... and gk(i). vk(i) ,VieN ,

the values defined in Section 5 corresponding to Y -

Iteration

The step k + 1 which yields a better polciy Vel proceeds in two phases.

(I) Solve the following system for gk(i) and vk(i)

(6) Sk(i) —; gk(yk(i)) R S

) g (1) + v (1) = 21,y (D)) + v (y, () .

Note that in practice the set of equations (6) is not necessary, a policy

Y being given it is easy to compute directly the value gk(i) for

i=1, ..., n and replace them in (7) .



(1I1) Va1 is obtained by letting yk+1(i) y1=1, ..., n, in the following

way:

Let h be satisfying:

(8) g (h) = Min (g, () .
Jer(i)

Case 1:

If h 1is unique choose:
Yes (1) = b

Case 2:

If h 1s not unique, choose an arbitrary yk+1(i) satisfying:

9) 2(1,vk+1(i)) + vk(yk+1(i)) = Min (R(4,3) + vk+1(j)) .
Jer (1)

In both Case 1 and Case 2, use the following rule (R):

(R) If vy, (1) satisfies (8) and (9), set vy (1) = y (1)

The rule (R) means that if the node associa 2d to 1 1in the kth step satisfies

(8) and (9) that will be the node associated to i in the k+1th step.

Note that if (N,y,) has only one connected component, test (8) can be
k

skipped.
The tests (8) and (9) applied to every node i, 1 = 1,2, ..., n , give a new

policy Yl ° At this stage, there are two possibilities:




10

(.) Yk+1(1) - Y‘(i) YieN, then 'Yk =y

(b) di such that Yk+1(i) # yk(i) , then go back
to (I) with k =k + 1.
Remarks

1) The test (1) implies that the comparisons of the quantities ¢(i,j) + vk(j)
are made with j belonging to the same connected component, hence, the sense of

the relative values: Vi of the "k .

2) If (N,I') is strongly connected, y 1is such that (N,y) contains only

one connected component and hence has a unique minimum average length cycle.

3) At each step of the procedure, in particular at the last one, one knows

the immediate descendent of each node, hence, it is easy to get the cycles.

7. Proof of the Algorithm

We need to prove the two following statements:

1) 1If for any 1 belonging to any cycle of (N,yk+1) Yk(i) i d Yk+1(i)

then g .,(1) < g, (1) . (From the properties of (N that implies

Pear)
Brer S B (D) VieN) .

2) 1If yk(i) = Yk+1(i) VieN then Y " Y - That means that when the
procedure stops, one cannot find a policy which leads to a better value of the
minimum g(i) , VieN . (Rule (R) implies the procedure stops on a finite number

of steps.)

Proof 1:

[} \
Let's assume yk(io) ¥ Yk+1<io’ for at least one io belonging to a cycle

1o, et ndhd e s dee il sl X -2 i » - g
Mokttt i PRSI T )




of (N'Yk+1) . The tests (1) and (2) of phase II implies:

(10) B (Mg (1) - gy (v (1 = v,
where wi <0
A1) e,y (@) + vy (g (D) = 21,7, (1) - v (v, (1) = ¢,

where 01 <0.

Note that from the Rule (R):

Y = 1, (D Ds, =0

Vg1 () # Y (Do, <0

Phase I leads to the systems:

12) g (1) = g, (v, (1)

(13) g (1) + v (1) = L(1,v, (1)) + v, (v, (1))

(14) By (1) = gkﬂ(vkﬂ(i))

(15) 8k+1(1) + vk+1(i) - l(i.Yk+1(1)) + Vk+1(Yk+1(i))

VieN

VieN

By introducing: ¥, , g Agk(i) = gk+1(1) - gk(i) s Avk(i) = Vk+1(i) - Vk(i) 8




in the differences (14) - (12) and (15) - (14), we get:

Ask(i) - Wi + Agk(Yk+1(1))

Ask(i) + av (1) o + Avk(vk+1(1))

for all ieN ; *1 ~ ¢1 <

Let Ch be the r-cycle of the hth connected component of (N

contains io satisfying the hypothesis, i.e., ¢ <0 .

i
o

By adding (16) for 1cCh :

) =
:I.EChAsk(1 iZ

b+ 1 8g (v, (1)
ie

% %

Then, ] v, =0 which implies vy =0,

icCh

bg, (1) = 8g, (v, 1, (1))

By adding (17) for 1eCh and using (18), we get

fASk(i) = z ¢i

ieCh

"Vt

) which




13

From the hypothesis, there exists 1°ech such that ¢, < 0 the R. H. S. of
o

(10) 1is negative which implies: .a

This proof applies for all h satisfying the hypothesis, Q. E. D .

Proof 2:

Let y = Y5 be the policy obtained at the end of the procedure. Let us

suppose there exists a policy Ye such that: | {

8t(io) < gs(io) for at least one 1

since, Ye did not come out from the procedure, we have:
! - =
(10") 8 (v, (1)) - g (v (1) = n ng 20

(1) v (r (D) + 8Ly, (1)-v, (r,(1)-2 (1,7, (1)) = u by 20

for all 1ieN .

Besides, we get the equivalent relation as in Proof 1, with k=8 , L +1 = ¢ .,

Let




[P —

8,¢8(1) = g (1) - 8, (1)

Atsv(i) = vt(i) - vs(i)

(16') 8,8(1) = n, + b, g8y (1))

(17') Atsg(i) + AtSV(i) =+ Atsv(Yt(i))

Let C'h be the p'- cycle of (N’Yt) which contains 1 by adding

(16') and (17') for ieC'. , we get as in Proof 1:
h

p'a, g(d) = J b, > 0
ts i i-
ieC’
h

then,

Atsg(i) >0
since

My >0.
o
Hence, the contradiction.
ai 1Juqu$.a~.a“.ﬁ- " 1 i b 1‘

14




8. Example:

The value of yk(i), gk(i), vk(i) » k=0,1,2,3,4, 1=1,2, sy 10

given in the following tableau (computations have been made by hand).
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The

This cycle is unique, Y, = Y has only one connected component.

Remarks:

1)

&)

3)

ninimum average length cycle 18 (1,4,5,3,1) ; its average length is -2 . /

Yy shows that the original graph has at least a negative length cycle.

We set arbitrarily vo(6) = vo(10) = 0 components of Yo o and

v (10) = 0, k=1,2,3,4 .

Yy s Y3 did not improve the value of g because the nodes of the
cycle (3,9,7,3) kept the same immediate descendents during Steps

2 and 3 .
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